

Chongqing University of <u>Technology</u>

ATA Advanced Technique of Artificial Intelligence

News Recommendation with Candidate-aware User Modeling (SIGIR_2022)

Tao Qi Department of Electronic Engineering, Tsinghua University taoqi.qt@gmail.com

Fangzhao Wu Microsoft Research Asia wufangzhao@gmail.com

Chuhan Wu Department of Electronic Engineering, Tsinghua University wuchuhan15@gmail.com Yongfeng Huang Department of Electronic Engineering, Tsinghua University yfhuang@tsinghua.edu.cn

2022. 7. 17 • ChongQing

Reported by Lele Duan

Code: https://github.com/taoqi98/CAUM

Chongqing University of Technology

Advanced Technique of Artificial Intelligence

1.Background2.Method3.Experiments

- News recommendation aims to match news with personalized user interest.
- Existing methods model user interests and candidate news content in a candidateagnostic way.
- Be difficult to accurately match candidate news with a specific user interest if candidate news is not considered in user modeling.

Figure 1: The matching between candidate news and user interest inferred from historical clicked news.

> Over view

Figure 2: Framework of our CAUM method.

Candidate-aware User Modeling

> Candi-SelfAt : Modeling global user interests.

$$\hat{r}_{i,j}^{k} = \mathbf{q}_{i}^{T} \mathbf{W}_{k}^{r} \mathbf{c}_{j}, \quad \mathbf{q}_{i}^{T} = \mathbf{Q}_{u} \mathbf{c}_{i}, \tag{1}$$

where $\hat{r}_{i,j}^k$ denotes the attention score generated by the *k*-th attention head to model relatedness between the *i*-th and *j*-th click, \mathbf{Q}_u is the projection matrix, and \mathbf{W}_k^r is parameters of the *k*-th attention head. Note that $\{\hat{r}_{i,j}^k\}_{j=1}^N$ model the relatedness between the *i*-th clicks and other user's clicks. We further adaptively select informative long-range relatedness for modeling user interest in candidate n_c based on their relevance with candidate news:

$$r_{i,j}^{k} = \hat{r}_{i,j}^{k} + \mathbf{q}_{c}^{T} \mathbf{W}_{k}^{r} \mathbf{c}_{j}, \quad \mathbf{q}_{c}^{T} = \mathbf{Q}_{c} \mathbf{n}_{c}, \tag{2}$$

where $r_{i,j}^k$ is the candidate-aware attention score, and \mathbf{Q}_c is a projection matrix. Then we learn the representation \mathbf{l}_i^k generated by the *k*-th head for the *i*-th click based on attention weights $\{\gamma_i^k\}_{i=1}^N$:

Figure 2: Framework of our CAUM method.

$$\mathbf{l}_{i}^{k} = \mathbf{W}_{o}^{k} \sum_{j=1}^{N} \gamma_{ij}^{k} \mathbf{c}_{j}, \quad \gamma_{ij}^{k} = \frac{\exp(r_{i,j}^{k})}{\sum_{p=1}^{N} \exp(r_{i,p}^{k})}, \quad (3)$$

where \mathbf{W}_{o}^{k} is the projection matrix of the *k*-th attention head. Finally, we learn the global contextual representation \mathbf{l}_{i} for *i*-th click by contacting $\{\mathbf{l}_{i}^{k}\}_{k=1}^{K}$, where *K* is the number of attention heads.

Candidate-aware User Modeling

> Candi-CNN : Modeling short-term user interests.

 $\mathbf{s}_i = \mathbf{W}_c[\mathbf{c}_{i-h}; ...; \mathbf{c}_i; ...; \mathbf{c}_{i+h}; \mathbf{n}_c]$

where**s**_i represents local contextual representi-thon of th₂h+1 click, is the window siz_iW_cf the CNN network, and represents parameters of filters in the *Candi-CNN* network. Local contextual representations:

 $[\mathbf{s}_1, \mathbf{s}_2, ..., \mathbf{s}_N]$

 $\mathbf{m}_i = \mathbf{P}_m[\mathbf{s}_i; \mathbf{l}_i]$, where \mathbf{P}_m is the projection matrix.

Candi-Att:

$$\mathbf{u} = \sum_{i=1}^{N} \alpha_i \mathbf{m}_i, \ \alpha_i = \frac{\exp(\Phi(\mathbf{m}_i, \mathbf{n}_c))}{\sum_{j=1}^{N} \exp(\Phi(\mathbf{m}_j, \mathbf{n}_c))},$$
(4)

where α_i is the weight of the *i*-th click and Φ is an MLP network. In this way, user interests relevant to the candidate news can be effectively encoded into **u** to improve the accuracy of interest matching.

News Modeling: $\mathbf{n} = \mathbf{n}^{t} + \mathbf{n}^{e} + \mathbf{n}^{v}.$ Interest Matching and Model Learning: $\hat{\underline{y}} = \mathbf{n}_{c}^{T} \cdot \mathbf{u}$ $\mathcal{L} = -\frac{1}{H} \sum_{i=1}^{H} \log \phi(\hat{y}_{i}^{p} - \hat{y}_{i}^{n})$

Table 1: Performance comparisons. The improvement of CAUM over baseline methods is significant at level $p \le 0.001$.

	MIND				NewsApp			
	AUC	MRR	nDCG@5	nDCG@10	AUC	MRR	nDCG@5	nDCG@10
GRU [10]	65.69 ± 0.15	31.47 ± 0.06	33.96 ± 0.07	39.70 ± 0.07	63.23 ± 0.37	27.83 ± 0.26	31.84 ± 0.31	37.41 ± 0.34
NAML [20]	66.49±0.19	32.38 ± 0.13	35.17 ± 0.15	40.84 ± 0.14	64.52 ± 0.35	29.02 ± 0.20	33.35 ± 0.30	38.90 ± 0.33
NPA [21]	66.56 ± 0.18	32.42 ± 0.10	35.20 ± 0.11	40.87 ± 0.13	64.39 ± 0.14	28.93 ± 0.10	33.31 ± 0.11	38.83 ± 0.11
NRMS [24]	68.04 ± 0.20	33.31 ± 0.07	36.23 ± 0.15	41.92 ± 0.12	65.36 ± 0.28	29.47 ± 0.21	33.96 ± 0.27	39.49 ± 0.19
LSTUR [1]	68.36 ± 0.22	33.30 ± 0.11	36.30 ± 0.16	42.00 ± 0.14	65.18 ± 0.23	29.28 ± 0.21	33.71 ± 0.23	39.28 ± 0.22
KRED [8]	67.73 ± 0.13	32.87 ± 0.11	35.81 ± 0.13	41.43 ± 0.15	65.45 ± 0.14	29.56 ± 0.09	34.11 ± 0.11	39.65 ± 0.12
DKN [19]	66.32 ± 0.18	32.13 ± 0.14	34.86 ± 0.13	40.47 ± 0.18	62.86 ± 0.37	28.00 ± 0.23	32.12 ± 0.29	37.68±0.28
HiFi-Ark [9]	67.93 ± 0.25	32.87 ± 0.07	35.77 ± 0.08	41.47 ± 0.10	64.91 ± 0.15	29.10 ± 0.12	33.52 ± 0.18	38.98 ± 0.14
FIM [18]	67.84 ± 0.12	33.26 ± 0.06	36.18 ± 0.10	41.86 ± 0.11	65.39 ± 0.10	29.63 ± 0.11	34.14 ± 0.12	39.60 ± 0.10
GNewsRec [3]	68.36 ± 0.22	33.41 ± 0.10	36.36 ± 0.13	42.01 ± 0.14	65.31 ± 0.22	29.40 ± 0.14	33.92 ± 0.16	39.48 ± 0.16
CAUM	70.04±0.08	34.71±0.08	37.89±0.07	43.57±0.07	66.44±0.07	30.07±0.10	34.69±0.12	40.23 ±0.10

Table 2: Method time complexity (multiplication operation) of calculating matching scores of *M* candidate news. News and user representation are *d*-dimensional.

NAML	$O(Md + Nd^2)$	GRU	$O(Md + Nd^2)$			
LSTUR	$O(Md + Nd^2)$	NRMS	$O(3Nd^2 + N^2d + Md)$			
CAUM	$O((3N+M)d^2 + (N^2 + MN)d)$					

Figure 3: Ablation study of CAUM.

Figure 4: Normalized inference time of different methods.

Chongqing University of Technology

ATAI Advanced Technique of Artificial Intelligence

Thank you!

Leibniz-Institut

